MTH 301: Group Theory

Practice Assignment II

- 1. Classify all homomorphisms from:
 - (a) $\mathbb{Z}_m \to \mathbb{Z}_n$
 - (b) $\mathbb{Z}_m \to \mathbb{Z}$
 - (c) $\mathbb{Z} \to \mathbb{Z}_n$
- 2. Establish all the assertions in Examples (a) and (b) in 5.2 (xi) of the lesson plan.
- 3. Show that the following statements pertaining to the semi-direct product $G \ltimes_{\psi} H$ of two groups are equivalent.
 - (a) ψ is the trivial homomorphism.
 - (b) $G \ltimes_{\psi} H = G \times H$.
 - (c) $G \leq G \ltimes_{\psi} H$.
- 4. Let G be a group, $N \leq G$, and $H \leq G$ with $H \cap N = \{1\}$. Then show that

$$NH \cong H \ltimes_{\psi_c} N,$$

where ψ_c is permutation representation afforded by the action $H \curvearrowright N$ by conjugation i.e. the action given by $(h, n) \mapsto hnh^{-1}$.

5. Find the action $\mathbb{Z}_2 \curvearrowright \mathbb{Z}_n$ that affords a permutation representation ψ so that

$$\mathbb{Z}_2 \ltimes_{\psi} \mathbb{Z}_n \cong D_{2n}.$$

[Hint: See Example 5.2 (xi) b.]